

Big Data Networking at Fermilab

Phil Demar, David Dykstra, Gabriele Garzoglio, Parag Mhashilkar, Anupam Rajendran, Wenji Wu

Spectrum of Support for Data Movement and Analysis in Big Data Science

Performance Optimization and Tools G-Netmon & MDTM

Multicore-Aware Data Transfer Middleware (MDTM) - Harnessing Multicore Parallelism to Scale Data Movement Toolkits

MDTM is a user-space resource scheduler that harness multicore parallelism to scale data movement toolkits at multicore systems.

- Data Transfer-Centric Scheduling and Resource Management Capabilities.
- NUMA Topology-Aware Scheduler
- Supporting Core Affinity on Networking Processing
- Supporting the QoS Mechanism to allow Differentiated Data Transfer

Multicore-Aware Data Transfer Middleware Data Transfer Application Non-Data Transfer Application Non-Data Transfer Application Transfer 1 Transfer 2 Scheduling thread Transfer 1 Transfer 2 Scheduling thread Resource Scheduler System Monitoring 1 O ... m O 1 ... n Mem Storage Network sysfs/procts Packet Scheduler Delivery Queue Flow-to-Core Queue Flow-to-Core Table Packet Scheduler Delivery Queue Flow-to-Core Table

G-NetMon: GPU-Accelerated Network Traffic Monitoring & Analysis Architecture

- A combination of multicore and manycore technologies
- Real-time Network Traffic Monitoring & Analysis
- Handling 10,000,000+ pps capabilities

Network Management and Control E-Center & ESCPS

Network path performance weather map E-Center

End site part of end-to-end circuit service

— ESCPS-controlled segment

path data extending across multiple network domains.
 Portal for end users to capture and discuss

Provides end-to-end and hop-by-hop network

- Portal for end users to capture and discuss network path-related issues and interpretation of
- Perfsonar-collected data with experts
- Traffic forecasting capability for user-specified network paths
- https://ecenter.fnal.gov

End Site Control Plane System

- Site integration with wide-area network circuit service
- Local network configured for circuit-directed traffic

Social Portal on Site Network Issues

Forecasting network traffic conditions

Configuration rules define routing modifications

High Performance Data Program (HTDP)

Mission

Mission of the High Throughput Data Program (HTDP) at Fermilab is to prepare the Laboratory and its stakeholders for 100GE infrastructure.

Focus

Test the performance and identify gaps in the Grid Middleware used by Fermilab stakeholders on the 100GE testbed operated by ESnet's Advanced Networking Initiative (ANI)

Performance Analysis on ANI 100Gb/s Testbed Grid Middleware Performance On ANI 100Gb/s Testbed Squid Performance on ANI 100Gb/s Testbed Squid Performance on ANI 100Gb/s Testbed Dashed Innovative Analysis on Anils and Anils and

100GE Test and Evaluation Environment

ESnet Advanced Network Initiative (ANI) 100GE Testbed

F: Aggregate flow endpoint
V: Virtual path (service) endpoint
T: Termination point (virtual circuit)

- Six hosts, three each at NERSC & ANL (RTT: 54ms). Each host has four 10 GE NICs.
- Test Datasets: Files from 8KB to 8GB increasing in power of 2, split into three sets, small, medium and large. Each dataset contained files of different sizes.

100GE at Fermilab

- Dedicated 100 GE wave into Fermilab (ESnet ChiExpress MAN)
- 100 GE connection will be used for R&D, connecting Fermilab to ESnet ANI testbed.
- Local testbed at Fermilab will include 10GE & 40GE host systems.

HTDP Future Plans

- Facilitate performance testing before moving 100 Gb/s to production -
 - Redo ANI tests using local testbed
 - o Test the performance of other Grid Middleware tools like dCache with NFS4, CVMFS, IRODS, etc., based on the stakeholders needs